

Becker County Planning & Zoning 915 Lake Ave Detroit Lakes, MN 56501 (218) 846-7314 www.co.becker.mn.us

Certificate of Compliance Inspection Report - Permit #: SS2025-2461

Owner & Proper	ty information		
Owner Name:	DEAN SPAETH	Site Address:	39021 DORA LEE RD
Mailing Address:	DEAN SPAETH 1526 210TH ST	Township - Sec/Twp/Rng:	MAPLE GROVE - 09/142/040
	MAHNOMEN MN 56557	Legal Description:	DORA LEE ESTATES LOT 7
Parcel #:	200492000		JenCo Services, LLC, L4041 (James
Secondary Parcel #:	70 T-100 - 20 T-200 - 20 T-100 -	Designer:	Piper)
		Installer:	Muff's Trenching LLC, L576 (Ronald

Insp- Effluent Screen Installed:	No	Insp- Tank Nbr/Size:	2/1500/2-1000
Insp- Alarm Required:	Yes	Insp- Drainfield Type:	Mound
Insp- Lift Pump in System:	Yes	Insp- Drainfield Size:	10X65 ROCK BED
Insp- Number of Bedrooms:	5	Insp- Soil Verification:	#1:SEE ATTACHED #2:N/A #3:N/A

Insp- Tank Dist to Road	10+
Insp- Tank Dist to Nearest Prop Line	10
Insp- Tank Dist to Nearest Structure	10
Insp- Tank Dist to Well	50+
Insp- Tank Dist to OHW	75+
Insp- Tank Dist to Pond/Wetland	NA
Insp- Tank Dist to Pressure Line	

Insp- Drainfield Dist to Road	10+
Insp- Drainfield Dist to Nearest Prop Line	PLA/less than 10ft
Insp- Drainfield Dist to Nearest Structure	20
Insp- Drainfield Dist to Well	50+
Insp- Drainfield Dist to OHW	75+
Insp- Drainfield Dist to Pond/Wetland	NA
Insp- Drainfield Dist to Pressure Line	AND THE RESIDENCE OF THE PARTY

Certificate of Compliance

(Yes) Certificate is hereby granted based upon the application, addendum from, plans, specifications and all other supporting data. With proper maintenance, this system can be expected to function satisfactory, however this is not a guarantee.

Certification Date: 08/21/2025

Zoning Office Signature:

Jeff Rusness - ISTS Inspector

^{*} Certificate of Compliance is not valid unless signed by a Registered Qualified Employee *

Field Review Form Permit # SS2025-2461 **Property and Owner** Owner: **DEAN SPAETH** Parcel Number: 200492000 Site Address: 39021 DORA LEE RD Secondary Parcel: **Home Information** Does the structure contain any of the following Designer submitted Inspector verified elements? Garbage disposal: No Garbage dispo**ঃৱা** Dishwasher: Dishwasher? Grinder pump: Grinder pump Lift pump in bsmt: Lift pump in basement? Number of bedrooms: 5 Review - Number of bedrooms: Effluent screen Effluent screen installed? Y (N) Mfr: Alarm: Yes Type: ELECTRIC Review - Alarm? (Y)N Type & Mfr: Lift pump in system: Yes Review - Lift pump in system? TY N Component Information Tank size: 1500, 1000 Review - Tank nbr: Drainfield type: Mound Review - Drainfield type: Drainfield size: Full size - 625 Review - Drainfield status: none installed /next spring Reduced/warr. size -Review - Drainfield size: Absorption area size: 6" Review - Absorption area size: Chamber type/num: Review - Chamber type: Trench sqft/chamber -Review - Trench sqft/chamber: Drainfield rock depth: 6" Review - Rock depth: Soil Verification Vertical separation verified Boring #1: CER Atholes Boring #2: Boring #3: **Setback Verification** Designer submitted Inspector verified Distance to... Tank Drainfield Tank Drainfield Road +50' +10' Nearest prop line +20' 5' Nearest structure +10' +20' Well +501 +50' OHW +75' +100' Pond/Wetland Pressure line Minstaller: MW Date System Installed: 4/10/1

Preliminary Evaluation Worksheet

1. Contact Information v 03.15.	2023				
Property Owner/Client: DEAN P SPAETH & JOANN C SPAETH Date Completed: 9/	1/2024				
Site Address: 39021 DORA LEE RD, WAUBUN, MN Project ID:					
Email: UNKNOWN Phone: UN	KNOWN				
Mailing Address: 1526 210TH ST, MAHNOMEN, MN 56557 Alt Phone:					
Legal Description: DORA LEE ESTATES LOT 7					
Parcel ID: 200492000 SEC: 09 TWP: 142 RNG:	040				
2. Flow and General System Information					
A. Client-Provided Information Project Type: □ New Construction □ Repair Project Use: □ Residential □ Other Establishment:					
Residential use: # Bedrooms: 5 Dwelling sq.ft.: Unfinished sq.ft.:					
# Adults: 2 # Children: # Teenagers:					
In-home business (Y/N): No If yes, describe:					
☐ Garbage Disposal/Grinder ☑ Dishwasher ☐ Hot Tub*					
Water-using devices: ☐ Sewage pump in basement ☑ Water Softener* ☐ Sump Pump*					
(check all that apply)	idifier*				
☑ Clothes Washing Machine ☑ High Eff. Furnace* ☐ Other:					
* Clear water source - should not go into sys Additional current or future uses: NONE	item				
Anticipated non-domestic waste: NONE					
The above is complete & accurate:					
Client signature & date	J				
B. Designer-determined Flow and Anticipated Waste Strength Information Attach additional information as necessary.					
Design Flow: 750 GPD Anticipated Waste Type: Residen	itial				
Maximum Concentration BOD: 170 mg/L TSS 60 mg/L Oil & Grease 25	mg/L				
3. Preliminary Site Information					
A. Water Supply Wells					
Well Depth Casing Confining STA					
1 # 1	urce				
DIPPO	VNER				
2					
3					
Additional Wall before a six					
Additional Well Information:					

Preliminary Evaluation Worksheet

Si	ite within 200' of noncommunity transient well (Y/N) No Yes, source:			
Site wit	thin a drinking water supply management area (Y/N) No Yes, source:			
Site in Well Head	d Protection inner wellhead management zone (Y/N) No Yes, source:			
Buried wate	er supply pipes within 50 ft of proposed system (Y/N) No			
B. Site loca	ated in a shoreland district/area? Yes Yes, name: WHITE EARTH			
	Elevation of ordinary high water level: 1452 ft Source: GIS			
Classific	cation: Lake- Recreational Tank Setback: 75 ft. STA Setback: 75 ft.			
C. Site loca	ated in a floodplain? No Yes, Type(s): N/A			
	Floodplain designation/elevation (10 Year): N/A ft Source: N/A			
	Floodplain designation/elevation (100 Year): N/A ft Source: N/A			
D. Property	y Line Id / Source: ☐ Owner ☐ Survey ☑ County GIS ☐ Plat Map ☐ Other: ☐ ☐			
E. ID distar	nce of relevant setbacks on map: Water Easements Well(s)			
	☑ Building(s) ☑ Property Lines ☑ OHWL ☐ Other:			
4. Preliminary S	Soil Profile Information From Web Soil Survey (attach map & description)			
	Map Units: 1138 Slope Range: 0 %			
Lis	t landforms: BEACHES ON LAKESHORES			
Landform	n position(s): Back/ Side Slope			
Paren	nt materials: Till			
	Depth to Bedrock/Restrictive Feature: >80 in Depth to Watertable: >80 in			
	Septic Tank Absorption Field- At-grade: Moderately Limited			
Map Unit Ratings	Septic Tank Absorption Field- Mound: Not Limited			
Septic Tank Absorption Field- Trench: Extremely Limited				
5. Local Government Unit Information				
Name of LGU: BECKER COUNTY				
LGU Contact: KYLE VAREBERG				
	LGU-specific setbacks:			
LGU-speci				
	LGU-specific setbacks:			
	LGU-specific setbacks: fic design requirements:			

Field Evaluation Worksheet

1. Project Information v 03.15.2023				
Property Owner/Client: DEAN P SPAETH & JOANN C SPAETH Project ID:				
Site Address: 39021 DORA LEE RD, WAUBUN, MN Date Completed: 9/1/2024				
2. Utility and Structure Information				
Utility Locations Identified Gopher State One Call #				
Locate and Verify (see Site Evaluation map)				
3. Site Information				
Vegetation type(s): Grass Landscape position: Back/ Side Slope				
Percent slope: 3 % Slope shape: Linear, Linear Slope direction: northeast				
Describe the flooding or run-on potential of site: NONE				
Describe the need for Type III or Type IV system: NONE				
Note:				
Proposed soil treatment area protected? (Y/N): Yes If yes, describe:				
4. General Soils Information				
Filled, Compacted, Disturbed areas (Y/N): No				
If yes, describe:				
Soil observations were conducted in the proposed system location (Y/N):				
A soil observation in the most limiting area of the proposed system (Y/N): Yes				
Number of soil observations: 3 Soil observation logs attached (Y/N): Yes				
Percolation tests performed & attached (Y/N): No				
5. Phase I. Reporting Information				
Depth Elevation				
Limiting Condition*: 18 in 96.4 ft *Most Restrictive Depth Identified from List Below				
Periodically saturated soil: 18 in 96.4 ft Soil Texture: Medium Sand				
Standing water: >80 in ft Percolation Rate: min/inch				
Bedrock: >80 in ft Soil Hyd Loading Rate: 1.2 gpd/sq.ft				
Benchmark Elevation: 100.0 ft Elevations and Benchmark on map? (Y/N): Yes				
Benchmark Elevation Location: TOP OF MOUND				
Differences between soil survey and field evaluation:				
Site evaluation issues / comments:				
Anticipated construction issues:				

Soil Observation Log

Project ID:

v 03.15.2023

Client: - Soil parent m	Client: DEAN P SPAETH & JO Soil parent material(s): (Check all that apply)	DEAN P SPAETH & JOANN C SPAETH (Check all that apply) Outwash	TH & JOA	NN C SPAI	METH Lac	H Lacustrine	Locat	Location / Address:	ess: 39021 DC	39021 DORA LEE RD, WAUBUN, MN anic Matter Disturbed/Fill	, WAUBUN,
Landscape Position:	osition:	Foot Slope		S	Slope %:	3.0	Slope shape:	Linear	Linear, Linear	Flooding/Run-On potential:	E
Vegetation:		Grass		Soil surv	Soil survey map units:	ınits:	1138	38	Surface Ele	Surface Elevation-Relative to benchmark:	С
ate/Time or	Date/Time of Day/Weather Conditions:	er Condition	ıs:	9/1/2024)24		PM	INS	YNNY	Limiting Layer Elevation:	aye
Observation	Observation #/Location:	#1			WN	NW CORNER		Observation Type:	ion Type:		
Depth (in)	Texture	Rock Frag. %	Matrix Color(s)		Mottle Color(s)	olor(s)	Redox Kind(s)	Indicator(s)	Shape	I Structure	≧
0-4	Medium Loamy Sand	2	10YR 3/2	2	None		None	None	Blocky	Weak	
4-8	Medium Loamy Sand	2	10YR 4/4	4	None		None	None	Granular	Weak	
8-18	Medium Loamy Sand	2	10YR 5/3	ω	None		None	None	Granular	Weak	
18+	Sandy Clay Loam	2	10YR 5/4	4	10YR 5/2	/2	Depletions	S2	Blocky	Moderate	
									·		i
Comments:											
hereby certi	tify that I have of	completed t	his work in	accorda	nce with :	all applic	hereby certify that I have completed this work in accordance with all applicable ordinances, rules and JAMES PIPER	, rules and laws	s. L4041		
(Desi) Optional Verif he periodicall	(Designer/Inspector) Optional Verification: I hereby certify that this soil observation was verified according to the periodically saturated soil or bedrock at the proposed soil treatment and dispersal site.	or) eby certify the control of the c	nat this soil at the prop	observationsed soil	(Sig on was ver treatment	(Signature) verified acco	(Designer/Inspector) Optional Verification: I hereby certify that this soil observation was verified according to Minn. R. 7082.0500 the periodically saturated soil or bedrock at the proposed soil treatment and dispersal site.	. 7082.0500 subp	(License #) . 3 A. The sign	(License #) subp. 3 A. The signature below represents an infield verification of	ese .
(LGU/D	(LGU/Designer/Inspector)	ctor)	ı		(Się	(Signature)			(Cert #)		_

Soil Observation Log

Project ID:

v 03.15.2023

								י וטטעני וטי			V 03.13.2023	
Client:	DE	AN P SPAI	DEAN P SPAETH & JOANN C SPAETH	NN C SP	H		Locat	Location / Address:	39	39021 DORA LEE RD, WAUBUN, MN	WAUBUN, MN	
Soil parent m	Soil parent material(s): (Check all that apply)	eck all th		☐ Outwash		☐ Lacustrine [□ Loess ☑ Till □	☐ Alluvium ☐ Bedrock	drock Organic Matter	c Matter 🔲 Disturbed/Fill	ed/Fill	
Landscape Position:		Foot Slope	עי	S	Slope %:	3.0	Slope shape:	Linear,	near, Linear	Flooding/Run-On potential:	n potential:	No
Vegetation:		Grass		Soil surv	Soil survey map units:	units:	1138	∞ .	Surface Elev	Surface Elevation-Relative to benchmark:	benchmark:	97.9
Date/Time o	Date/Time of Day/Weather Conditions:	Condition	is:	9/1/2024)24		PM	YNNUS	ÑΥ	Limiting Layer Elevation:	Elevation:	95.4
Observation	Observation #/Location:	#2			A	MIDDLE		Observation Type:	ion Type:		Auger	
Depth (in)	Texture	Rock Frag. %	Matrix Color(s)		Mottle Color(s)	olor(s)	Redox Kind(s)	Indicator(s)	Shane	I Structure-		G
0-4	Medium	2	10YR 3/2	2	None		None	None				Č
1	Loamy Sand	,							Granular	Weak	Loose	
4.9	Medium	2	10YR 4/4	4	None		None	None	Granular	West		
	Loamy Sand	1							Granutar	weak	Loose	
9-18	Medium	2	10YR 5/3	ω	None		None	None	Granular	Weak	loose	
	account oute			-								
18+	Sandy Clay	2	10YR 5/4	4	10YR 5/2	/2	Depletions	None	Blocky	Moderate	Friable	
	Loam		:						, and the second	2000	, in the second	
		·							· .			
		,										
										-		
		· .									:	
Comments:									.			
l hereby certi	fy that I have c	ompleted t	this work in	accorda	nce with	all applic	I hereby certify that I have completed this work in accordance with all applicable ordinances, rules and	rules and laws.	, , , , , , , , , , , , , , , , , , ,			
	JAMES PIPER		1						L4041		9/1/2024	
(Desi Optional Verif	(Designer/Inspector) Verification: I hereby) by certify th	nat this soil c	bservatio	(Sigon was ver	(Signature) verified acc	(Designer/Inspector) Optional Verification: I hereby certify that this soil observation was verified according to Minn. R. 7082.0500	7082.0500 subp.	(License #) 3 A. The signa	(License #) (Date) subp. 3 A. The signature below represents an infield verification of	(Date) its an infield verifi	cation of
the periodicall	the periodically saturated soil or bedrock at the proposed soil treatment and dispersal site.	or bedrock	at the propo	osed soil t	treatment	: and disp	ersal site.	-	•	,		
(LGU/D	(LGU/Designer/Inspector)	tor)	ı		(Sig	(Signature)		1	(Cert #)		(Date)	

Soil Observation Log

	35.5							Project ID:			v 03.15.2023	
Client:	DE	DEAN P SPAETH & JOANN C SPAETH	ETH & JO	DANN C SI	PAETH		Locati	Location / Address:	39	39021 DORA LEE RD, WAUBUN, MN	WAUBUN, MN	
Soil parent m	Soil parent material(s): (Check all that apply)	neck all th	nat apply)	☐ Outwash		☐ Lacustrine ☐	□ Loess ☑ Till □	☐ Alluvium ☐ Be	☐ Bedrock ☐ Organic Matter	ic Matter 🔲 Disturbed/Fill	ed/Fill	
Landscape Position:	osition:	Back/Side Slope	e Slope		Slope %:	3.0	Slope shape:	Linear,	ă I	ሷ	In potential:	8
Vegetation:		Grass		Soil su	Soil survey map units:	units:	1138		Surface Ele	Surface Elevation-Relative to benchmark:	benchmark:	96.9
Date/Time or	Date/Time of Day/Weather Conditions:	r Conditio	ins:	9/1/2024	2024		PM	YNNUS	ŃΥ	Limiting Laver Elevation:	r Elevation:	20
Observation	Observation #/Location:	#3	3		æ	CORNER		Observation Type:	ion Type:	•	Auger	
Depth (in)	Texture	Rock Frag. %	Matrix Color(s)	Color(s)	Mottle Color(s)	olor(s)	Redox Kind(s)	Indicator(s)	Shane	I Structure		
0-3	Medium	2	10YR 3/2	3/2	None		None	None	Granular	Wat	Consistence	ia
	Loamy Sand								Granutar	Weak	Loose	
3-9	Medium	2	10YR 4/4	4/4	None		None	None	Granular	Wask		
	Loamy sand								Gallual	weak	Loose	
9-18	Medium Loamy Sand	2	10YR 5/3	5/3	None		None	None	Granular	Weak	Loose	
	Sandy Clay		10YR 5/4	5/4	None		None	None				
	Loam								Blocky	Weak	Friable	
	- 1											
												
Comments:												
nereby cerur ال	JAMES PIPER	ompleted	this work	in accorda	ance with	all applic	I nereby certify that I have completed this work in accordance with all applicable ordinances, rules and laws. JAMES PIPER	rules and laws	1.4041		VCUC/1/10	
(Desig	ner/Inspector				(5)	onature)		1	/1 in a second #1		17070	
Optional Verifithe periodically	Optional Verification: I hereby certify that this soil observation was verified according to the periodically saturated soil or bedrock at the proposed soil treatment and dispersal site.	y certify the or bedrock	hat this so at the pro	il observat oposed soil	ion was vei treatment	rified acco	ording to Minn. R. I ersal site.	7082.0500 subp.	3 A. The signa	Optional Verification: I hereby certify that this soil observation was verified according to Minn. R. 7082.0500 subp. 3 A. The signature below represents an infield verification of the periodically saturated soil or bedrock at the proposed soil treatment and dispersal site.	(Pace) Its an infield verific	ation of
			i									
(LGU/De	(LGU/Designer/Inspector)	tor)			(Sig	(Signature)			(Cert #)	ı	(Date)	

Design Summary Page

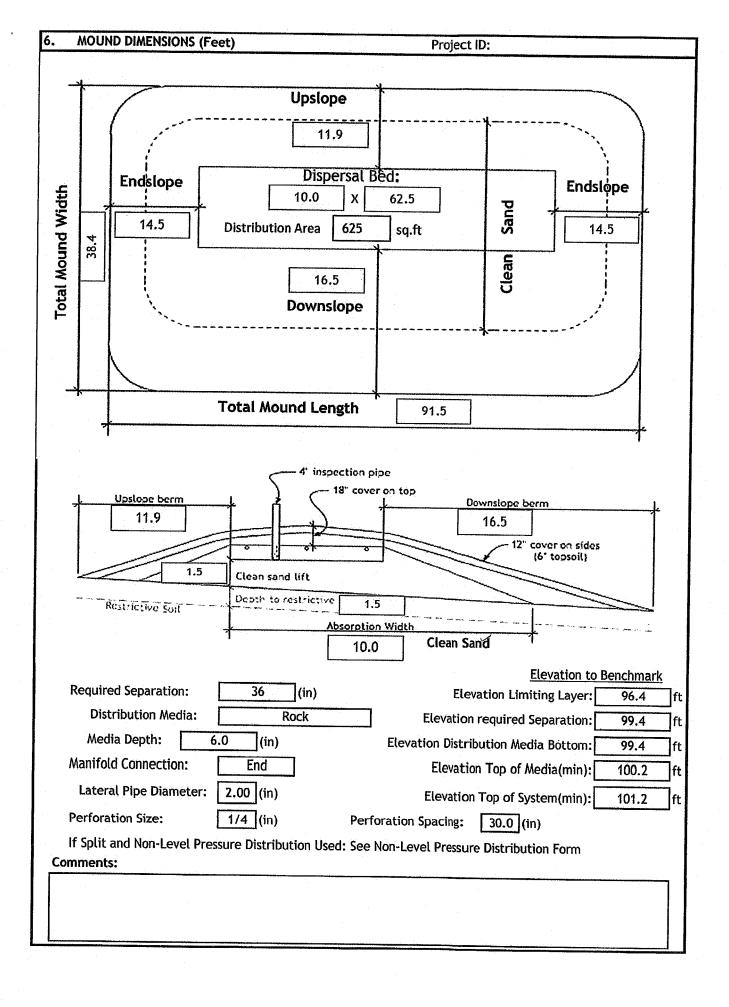
1. PROJECT INFORMATION	v 03.15.2023
Property Owner/Client: DEAN P SPAETH & JO	
Site Address: 39021 DORA LEE RD,	
Email Address: UNKNOWN	Phone: UNKNOWN
L	h waste strength data/estimated strength for Other Establishments
Design Flow: 750	
BOD: 170	
Treatment Level: C	mg/L TSS: 60 mg/L Oil & Grease: 25 mg/L
3. HOLDING TANK SIZING	Select Treatment Level C for residential septic tank effluent
	noom, Other Establishment = Design Flow x 5.0, Minimum size 1000 gallons
Code Minimum Holding Tank Capacity:	Gallons with Tanks or Compartments
Recommended Holding Tank Capacity:	Gallons with Tanks or Compartments
Type of High Level Alarm:	(Set @ 75% tank capacity)
Comments:	
4. SEPTIC TANK SIZING	
A. Residential dwellings:	
Number of Bedrooms (Residential): 5	
Code Minimum Septic Tank Capacity: 1500	Gallons with 1 Tanks or Compartments
Recommended Septic Tank Capacity: 1500	Gallons with 1 Tanks or Compartments
Effluent Screen & Alarm (Y/N): No	Model/Type:
B. Other Establishments:	
Waste received by:	GPD x Days Hyd. Retention Time
Code Minimum Septic Tank Capacity:	Gallons with Tanks or Compartments
Recommended Septic Tank Capacity:	Gallons with Tanks or Compartments
Effluent Screen & Alarm (Y/N):	Model/Type:
* Other Establishments Require Department of Labor and Indust	ry Approval and Inspection for Building Sewer *
5. PUMP TANK SIZING	
Soil Treatment Dosing Tank	Other Component Dosing Tank:
Pump Tank Capacity (Minimum): 750	Gal Pump Tank Capacity (Minimum): Gal
Pump Tank Capacity (Recommended): 1000	Gal Pump Tank Capacity (Recommended): Gal
Pump Req: 56.0 GPM Total Head 14.8	ft Pump Req: GPM Total Head ft
Supply Pipe Dia. 2.00 in Dose Vol: 150.0	gal Supply Pipe Dia. in Dose Vol: Gal
* Flow measurement device must be incorporated for any system	

Design Summary Page

6. SYSTEM AND DIS	TRIBUTION TYPE	Project ID:	
Soil Treatment Type:	Mound	Distribution Type:	Pressure Distribution-Level
Elevation Benchmark:	100.0	ft Benchmark Location:	TOP OF MOUND
MPCA System Type:	Type I	Distribution Media:	Rock
Type III/IV/V Details:			
7. SITE EVALUATION	I SUMMARY:		
Describe Limiting Cond	lition: Redoximo	orphic Features/Saturated Soils	
Layers with >35% Ro		es/no) No If yes, describe below	: % rock and layer thickness, amount of
Note:	/ additional inform	nation for addressing the rock fragment	ts in this design.
limiting Cand	Depth lition 19	7 <u></u> 7	f Limiting Condition
Limiting Cond		-	ft Critical for system compliance Distribution Elevation > Code Max Depth
Minimum Req'd Separa	<u> </u>	inches 3.0 ft Elevation	
Code Max System De *This is the maximum depth to		inches -1.5 ft 99,40 stribution media for required separation. Ne	L
Designed Distribution		9.4 ft Minimum Sand Depth:	18.0 inches
A. Soil Texture:	Mèr	dium Sand B. Organic Loading	Rate (optional): lbs/sq.ft/day 0
C. Soil Hyd. Loading	Rate: 1.20	GPD/ft ² D: Percolation Rate:	MPI
E. Contour Loading	Rate: 6	Note:	
F. Measured Land S	Slope: 3.0	% Note:	
Comm	ients:		
8. SOIL TREATMENT	AREA DESIGN SU	MMARY	
Trench:			
Dispersal Area	sq.ft	Sidewall Depth in	Trench Width ft
Total Lineal Feet			Code Max. Trench Depth in
Contour Loading Rate	ft	Minimum Length ft	Designed Trench Depth in
Bed:			<u> </u>
Dispersal Area	sq.ft	Sidewall Depth in	Maximum Bed Depth in
Bed Width	ft	Bed Length ft	Designed Bed Depth in
Mound:	1050 1-4		
Dispersal Area		Bed Length 62.5 ft	Bed Width 10.0 ft
Absorption Width	10.0 ft	Clean Sand Lift 1.5 ft	Berm Width (0-1%)
Upslope Berm Width		Downslope Berm 16.5 ft	Endslope Berm Width 14.5 ft
Total System Length	91.5 ft	System Width 38.4 ft	Contour Loading Rate 12.0 gal/ft

Design Summary Page

At-Grade:			Project ID:		
Dispersal Area	sq.ft	Bed Length	ft	Bed Widt	h ft
Upslope Berm		nslope Berm	ft	Finished Heigh	
System Length		dslope Berm	ft	System Widt	
				System widt	h[ft
Level & Equal Pressure Di		ment Area ral Diameter 2.	00 in	lakani Canatan	
Perforation Spacing		<u> </u>		Lateral Spacing	3 ft
Min Dose Volume		foration Diameter		Drainback Volume	
				tal Dosing Volume	155 gal
Non-Level and Unequal Pr	Dine	Soil Treatment Ard	a		Minimo
Elevation Pi	ipe Size Volume (gal/ft)	Pipe Perf Length (ft) (in		Spacing (in)	Minimum Dose Volume
Lateral 1	(547,14)				gal
Lateral 2					Maximum Dose Volume
Lateral 3					gal
Lateral 4					Total Dosing
Lateral 5					Volume
Lateral 6					gal
9. Organic Loading and	d Additional Info for	At-Risk, HSW or T	vpe IV Design		
Organic Loading to Soil Tre	eatment		,,		
A. Starting BOD Concent	ration = Design Flow	X 0.7 X Starting Bo	DD (mg/L) X 8.35	÷ 1,000,000	
gpd X		L X 8.35 ÷ 1,000,00		lbs. BOD/day (Org	anic Loading Design)
B. Organic Loading to So	oil Treatment Area: (e	enter loading value	in 7B)	-	
mg/L X	gpd :	X 0.7 X 8.35 ÷ 1,000,	000 ÷	sq.ft =	lbs./day/sqft
HSW Technology Strength I	Reduction			<u> </u>	
A. Starting BOD Concenti	ration = Design Flow	X Starting BOD (mg	/L) X 8.35 ÷ 1,00	00,000	İ
gpd X		X 8.35 ÷ 1,000,000		lbs. BOD/day (HSW	Technology Design)
B. Target BOD Concentra	ation = Design Flow >	(Target BOD (mg/l) X 8.35 ÷ 1,000,		3,
gpd X	mg/L)	X 8.35 ÷ 1,000,000		lbs. BOD/day (HSW	Technology Design)
	Lbs	s. BOD To Be Remo	/ed:	lbs. BOD/day (HSW	Technology Design)
Pretreatment Tech	nnology:			*Must Meet	or Exceed Target
Disinfection Tech	nology:				or Levels A & B
10. Comments/Special De	esign Considerations				
		-			
I hereby certify that I I	have completed this	work in accordance	with all applica	ble ordinances, ru	les and laws.
JAMES PIPER			·	L4041	8/14/2025
(Designer)		(Signature)		cense #)	(Date)



Mound Design Worksheet ≥1% Slope

1.	SYS	TEM S	IZINO	G:		Proje	ct ID:				v (3.15.2023
	A. Desi	gn Flo	ow:		7	'50	GPD	TABLE IXa				
	B. Soil	Load	ing Ra	ate:	1	.20	GPD/sqft	LOADING RATES			A CONTRACTOR OF THE PARTY OF TH	
	C. Dept	h to	Limit	ing Condition	1	.5	ft	AND ABSORE		t Level C	Treatment Le	Charles and the second
1	D. Perc	ent L	and S	Slope:	3	3.0 %		Percolation Rate (MPI)	Absorption Area Loading Rate	Mound Absorption Ratio	Absorption Area Loading Rate	Mound Absorption
	E. Med	ia (Sa	nd) L	oading Rate:	1	.2	GPD/sqft		(gpd/ft²)	Katio	(gpd/ft²)	Ratio
ı	F. Moui	nd Ab	sorpt	ion Ratio:	1.	.00		<0.1 0.1 to 5	- 40	1	-	1
				Table I			7	0.1 to 5 (fine sand	1.2 0.6	1 2	1.6	1 1.6
		- 1	NOUNI	D CONTOUR LOADING	RATES:			and loamy fine sand) 6 to 15	0.78	1.5	1	1.6
	Meast		← OR	Texture - derived		Conto Loadir		16 to 30	0.6	2	0.78	2
	Perc I	≀ate		mound absorption rati	0	Rate		31 to 45	0.5	2.4	0.78	2
	≤ 601	nni		1.0, 1.3, 2.0, 2.4, 2.6		≤12		46 to 60	0.45	2.6	0.6	2.6
	2 00.	,.p.	•	1.0, 1.3, 2.0, 2.4, 2.0		212		61 to 120	*	5	0.3	5.3
	61-120	mpi	OR	5.0	,	≤12		>120	.	-	- 1	-
	h 120		•	, E OI	-		*	Systems with the				
	≥ 120	nibi		>5.0*	,	≤6*		Contour Loadi				is a
2.	DISP	FRSA	I MF	DIA SIZING	***************************************			<u> </u>	ecommend	jed value	•	
				rption Required Bo	ttom /	Aros: D	ocian Flor	v (1A) + Design	Modia Lor	odion Dat	~(dE)	
•	4. riyai	udit.	750						 1	ding Kati	e(IE)	
		<u>L</u>	7.50	GPD ÷	I	.2	GPD/sqft	= 625	sq.ft			
[Organic	Sizi	ng (0	PTIONAL)	***************************************							
	3. Organ	nic Ab	sorpt	ion Bed Area = Orga	nic Loa	iding (Si	ımmarv 9/	A) + Organic Soil	Loading R	ate (Sumn	nary 78)	! !
		·		os BOD ÷		1	D/sq.ft		sq.ft	(s	,,	i
į	<u> </u>				·············	1						
-	C. Requ	ired	Bed A	Area = Greater of H	— - — ydraul	ic (1D)	or Organi	ic Bed Area (1E) [625	sq.ft	
ſ	Desi	gned	Dispe	ersal Media Area:	6:	25	sq.ft <i>Op</i>	tional upsizing	of area to	o be large	 er than 2C	
F	3 Ente	r Dier	arcal	Bed Width:	10				•	,		
		•		L				n not exceed 1	•			İ
(Calci	ılate		our Loading Rate: E		idth(ZB) I	X Design	Media Loading	Rate(1E)			
			10	ft X 1.		GPD/so	•	12.0 gal/			xceed Tab	le 1
). Calcı	ılate	Minin	num Dispersal Bed	Lengti	1: Dispe	rsal Bed	Area(2A) + Bed	d Width(2E	3)		
			625	sqft ÷ 10.	0	ft =	62.5	ft				ļ
	lf	a lar	ger d	lispersal media Len	gth is	desired	, enter si	ze:] _{ft}			
	ABSC	RPTI	ON A	REA SIZING	 					***************************************		
					ا ماداد (2D) V A	in and it is		4>		······································	
,	a, calci	nate	10.0	rption Width: Bed V		ZD) X N			IF)			
						= [10.0	ft				•
E	B. For s	lopes	>1%,	the Absorption Wie	dth is	measur	ed downh	ill from the up	slope edge	of the B	ed.	-
	Calcu	ılate	Down	slope Absorption <u>W</u>	/idth:	Absorpt	ion Widtl	n(1F) - Bed Wi	dth(2B)			
				Γ	10	.0	ft - 🗀	10.0 ft	=	ft		
				Ŀ			<u> </u>		L			I

4. DISTRIBUTION MEDIA: Proje	ect ID:						
Select Dispersal Media: Rock Enter Either 4	IA or 4B						
A. Rock Depth Below Distribution Pipe							
6 in	· 						
	ck registered product						
	ormation for specific						
Specific Media Comments:	ation details and design						
5. MOUND SIZING Project	· ID:						
A. Clean Sand Lift: Required Separation - Depth to Limiting Condition = Clean							
3.0 ft - 1.5 ft = 1.5 ft Design Sand Lift (opti							
B. Upslope Height: Clean Sand Lift(6A) + Depth of Media(4AorB) +Depth to Co							
15 5 050 6 000	ft = 3.3 ft						
Hodens Roma 12.4 2.00 Control	8 9 10 11 12 2.42 2.36 2.31 2.26 2.21						
Davie 44 4 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.42 2.36 2.31 2.26 2.21 3.03 2.94 2.86 2.78 2.70						
C. Select Upslope Berm Multiplier (based on land slope): 3.57							
D. Calculate Upslope Berm Width: Multiplier (5C) X Upslope Mound Height (5B	3)						
3.57 X 3.3 ft =	11.9 ft						
E. Calculate Drop in Elevation Under Bed: Bed Width(2B) X Land Slope(1D) ÷ 1							
10.0 ft X 3.0 % ÷ 10							
F. Calculate Downslope Mound Height: Upslope Height(5B) + Drop in Elevation	,						
3.3 ft + 0.30 ft =	3.6 ft						
Land Slong 9/ 0 1 1 2 2 3							
Downslope 3:1 3.00 3.09 3.19 3.30 3.41 3.53 3.66 3.80 3	95 4 11 4 29 4 48 4 69						
Berm Ratio 4:1 4.00 4.17 4.35 4.54 4.76 5.00 5.26 5.56 5.	.88 6.25 6.67 7.14 7.69						
G. Select Downslope Berm Multiplier (based on land slope): 4.54							
H. Calculate Downslope Berm Width: Downslope Multiplier(5G) X Downslope H	eight (5F)						
4.54 x 3.6 ft =	16.5 ft						
I. Calculate Minimum Berm to Cover Absorption Area: Downslope Absorption V	Vidth(3A) + 4 feet						
ft + 4 ft =	4.0 ft						
J. Design Downslope Berm = greater of 5H and 5I: 16.5 ft							
K. Select Endslope Berm Multiplier: 4.00	(usually 3.0 or 4.0)						
L. Calculate Endslope Berm Width = Endslope Berm Multiplier(5K) X Downslope							
4.00 X 3.6 ft =	14.5 ft						
M. Calculate Mound Width: Upslope Berm Width(5D) + Bed Width(2B) + Downslo	ppe Berm Width(5J)						
11.9 ft + 10.0 ft + 16.5	ft = 38.4 ft						
N. Calculate Mound Length: Endslope Berm Width (5L) + Bed Length(2D) + End	Islope Berm Width(5L)						
14.5 ft + 62.5 ft + 14.5	ft = 91.5 ft						

Mound Materials Worksheet

Project ID:	v 03.15.2023
A. Rock Volume: (Rock Below Pipe + Rock to cover pipe (pipe outside dia + ~2 inch)) X Bed Length X Bed Wil	dth = Volume
	520.8 cu.ft
Divide cu.ft by 27 cu.ft/cu.yd to calculate cubic yards: 520.8 cu.ft ÷ 27 =	19.3 cu.yd
	25.1 cu.yd
B. Calculate Clean Sand Volume:	
Volume Under Rock bed: Average Sand Depth \times Media Width \times Media Length = cubic feet 1.7 ft \times 10.0 ft \times 62.5 ft =	1031 cu.ft
For a Mound on a slope from 0-1%	
Volume from Length = ((Upslope Mound Height - 1) X Absorption Width Beyond Bed X Media Bed Lengt ft - 1) X X ft =	<u>:h)</u>
Volume from Width = ((Upslope Mound Height - 1) X Absorption Width Beyond Bed X Media Bed Width)	
ft - 1) X X ft =	,
Total Clean Sand Volume : Volume from Length + Volume from Width + Volume Under Media	
cu.ft + cu.ft + cu.ft =	_cu.ft
For a Mound on a slope greater than 1%	
Upslope Volume: ((Upslope Mound Height - 1) x 3 x Bed Length) \div 2 = cubic feet ((3.3 ft - 1) X 3.0 ft X 62.5) \div 2 = 2	
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	18.4 cu.ft
Downslope Volume: ((Downslope Height - 1) x Downslope Absorption Width x Media Length) \div 2 = cu ((3.6 ft - 1) X ft X 62.5) \div 2 =	
Endslope Volume: (Downslope Mound Height - 1) x 3 x Media Width = cubic feet	cu.ft
	/8.9 cu.ft
Total Clean Sand Volume: Upslope Volume + Downslope Volume + Endslope Volume + Volume Under	
1 719 / 1	28.6 cu.ft
Divide cu.ft by 27 cu.ft/cu.yd to calculate cubic yards: 1328.6 cu.ft ÷ 27 = 4	9.2 cu.yd
Add 20% for constructs bills	4.0 cu.yd
C. Calculate Sandy Berm Volume:	
Total Berm Volume (approx.): ((Avg. Mound Height - 0.5 ft topsoil) x Mound Width x Mound Length) ÷	
	33.2 cu.ft
Total Mound Volume - Clean Sand volume - Rock Volume = cubic feet 5233.2 cu.ft - 1328.6 cu.ft - 520.8 cu.ft = 33	83.8 cu.ft
Divide ou ft by 27 ou ft/ou video calculate a living in the color of t	
Add 30% for constructs hills	25.3 cu.yd 2.9 cu.yd
D. Calculate Topsoil Material Volume: Total Mound Width X Total Mound Length X .5 ft	Z.7 Cu.yu
79.4	56.1 cu.ft
Divide ou ft by 27 ou ft/guyd to calculate action at 1	
Add 30% for constructabilities	5.0 cu.yd 4.6 cu.yd

Pressure Distribution Design Worksheet

						Project	ID:		***************************************		v 0	03.15.2023
1.	Media Bed Widt	th:				Γ	10 ft					
2.	Minimum Numb	er of La	terals in	system	/zone =	Rounde	ed up number of	[(Media	Bed Wi	dth - 4)	+ 3] + 1	
		[(10	-4) ÷ 3] +	1 =	3 late	rals	Does	not ap	ply to at	t-grades
3.	Designer Select	ed Numi	ber of L	aterals	•	Ē	3 late	rals				
4.	Cannot be less			ept in a	t-grade:	s)		e di estado de entre	e de la companya de l	musin Ala		
	Select Perforati		. •			Ļ	2.50 ft	V serior	on the space of a	artein La 1793	Than	
5. 6.	Select Perforation Length of Later				(i \ . 2	Ecot.	1/4 in		n- of roll Incohor scripts '/o	7	4050h 3630h 37	
٠.							7					
<u>.</u>	62.5	- 2f	=				erforation can n					dge.
7.	Spacing (4.) and						the <i>Length of L</i> ober.	aterals(6.) by 1	he <i>Perf</i>	oration	
	Number of Perf	oration	Spaces =	60	0.5	ft	÷ 2.5	ft	-	24	Sp	aces
8.	Number of Perf	orations	per Lat	eral is	equal to	1.0 plu	is the Number o	f Perfore	ation Sp	aces(7.)	. Chec	k table
	value is double	the num with a c	iner of t	errorat anifold.	ions per	ıateral	guarantees less	than a '	10% disc	narge va	ırlation.	. The
		foration				S	oaces + 1 =		25	Perfs. P	er Later	al
	<u> </u>	Max	mum Num	ber of Peri	forations P	er Lateral	to Guarantee <10% D	ischarge Va			· ·	
		1/4 Inch I	erforation	S				7/32 1	Inch Perfo	ations	****	
Perfo	ration Spacing (Feet)			iameter (i	·	,				hameter (I	nches)	
		1	114	11/2	2	3	(Feet)	1	114	112	2	3
	2	10	13	18	30	60	2	11	16	21	34	68
	21/2 3	8	12	16	28	54	21/2	10	14	20	32	64
	3	8	12	16	25	52	3	9	14	19	30	60
		3/16 Inch						1/8 [/	nch Perfor			
Perfo	ration Spacing (Feet)		·····	iameter (I			Perforation Spacing			Diameter (la		
	2	12	114	11½ 26	2	3	(Feet)	1	114	11/2	2	3
	21/2				46	87	2	21	33	44	74	149
	3	12	17	24 22	40 37	80 75	3	20	30	41	69	135
	<u> </u>	<u> </u>		26	J		.	20	29	38	64	128
		m	aniiold pipe	١			Cleanouts					
		_		1			production					_
				pipe	from pump	$- \parallel / \parallel$	м	lanifold pipe ~]
	I			\mathbb{L}	ė	- 11/			-	-		
lean ou	nts P			<u>_</u> ,	L o				3			
	8			alt	ernate locat	ion	2		<u></u>		Alternate k of pipe fron	
	FND	Connect	ion	of	pipe from pr	<u>md</u>	<u></u>	ENTER C			ил ритр	
Perf	Per Lateral:	25	.10/1		P	erf Per	Lateral Equal Sp		13	i	12	
										' -	1	
	· · · · · · · · · · · · · · · · · · ·				*	must not	Per Lateral Non- exceed maximum nu	mber perf	s per late	ral in table	<u> </u>	
9.	Total Number of of Perforated Lo	f Perford aterals.(ations e 3.)	quals th	e Numb	er of Pe	erforations per L	ateral ('8.) mul	tiplied b	y the N	umber
	25 Per	rf. Per L	at. X	3	N	lumber (of Perf. Lat. =	7	5 า	otal Nu	mber of	Perf.
10.	Spacing of late	erals; N	lust be g	reater	than 1 f	oot and	no more than 3	feet:		3.0	ft	
11.	Select Type of N						End	7		Manifold C		
	Select Lateral D			•			2.00	_	number o can be do		lateral in	the table
					~~~~				شبيح			



### Pressure Distribution Design Worksheet



13.	Calculate the Square Feet per Perforation.		Perforat	ion Dischur	go (GPA)	
	Recommended value is 4-11 ft2 per perforation, Does not apply to At-Grades			Perforatio	Diameter	
a.	Bed Area = Bed Width (ft) X Bed Length (ft)	Head (ft)	1/4	3/11	7/12	1/4
	40 6 7 63 6 60	1.0"	0.18	0.41	0.56	0.74
	10 ft X 63 ft = 625 sq.ft	1.5	0.22	0.51	0.69	0.9
L	Course Continue Destauration Destaurant is it in a state to the	2.0	0.26	0.59	0.80	1.04
D.	Square Foot per Perforation = Bed Area ÷ by the Total Number of Perfs	2.5 3.0	0.29	0.65	0.69	1,17
	625 sqft ÷ 75 perf = 8.3 sq.ft/perf	4.0	0.32	0.72	0.9B	1.28
	625 sqft ÷ 75 perf = 8.3 sq.ft/perf	5.0°	0.41	0.93	1,26	1.65
14.	Select Minimum Average Head: 1.0 ft	1 (00)	Dwellings wi	th 3/16 inc		
			Dwellings wi	th 1/8 inch	perforation	
15.	Select Perforation Discharge based on Table: 0.74 GPM per Perf	2 feet	Other establinch to 1/4 i	ishments a	d HSTS vitt	
16.	Flow Rate = Total Number of Perfs(9.) X Perforation Discharge(15.)		Other estable perforations		d ASTS with	1/8 inch
	75 Perfs X 0.74 GPM per Perforation = 56	GPM			-:	
17.	Volume of Liquid Per Foot of Distribution Piping (Table II): 0.170	Gallon	s/ft			
18.	Volume of Distribution Piping = Number of Perforated Laterals(3.) X Lengt			Tab	le II	
10.	Volume of Distribution Piping = Number of Perforated Laterals(3.) X Lengt of Laterals(6.) X Volume of Liquid Per Foot of Distribution Piping (17.)	n	Volu		f Ligu pe	id in
			Pi	pe	Liq	uid
	3 X 61   ft X   0.170   gal/ft =   30.9	Gallons	Dian	neter	Peri	50.7
4.4				hes)	(Gall	ons)
19.	Minimum Delivered Volume = Volume of Distribution Piping X 4			1	0.0	45
	30.9 gals X 4 = 123.4 Gallons			25	0.0	
	30.9 gals X 4 = 123.4 Gallons			.5	0.1	
				2	0.1	
20.	Maximum Delivered Volume = Design flow x 25%			3	0.3	
	750.0 gpd X 25% = 187.5 Gallons		-	4	0.6	
21.	Minimum Delivered vs Maximum Delivered evaluation: Volume rati	io corr	ect	<del></del>		
Lomm	ents/Special Design Considerations:			1		



### Basic STA Pump Selection Design Worksheet

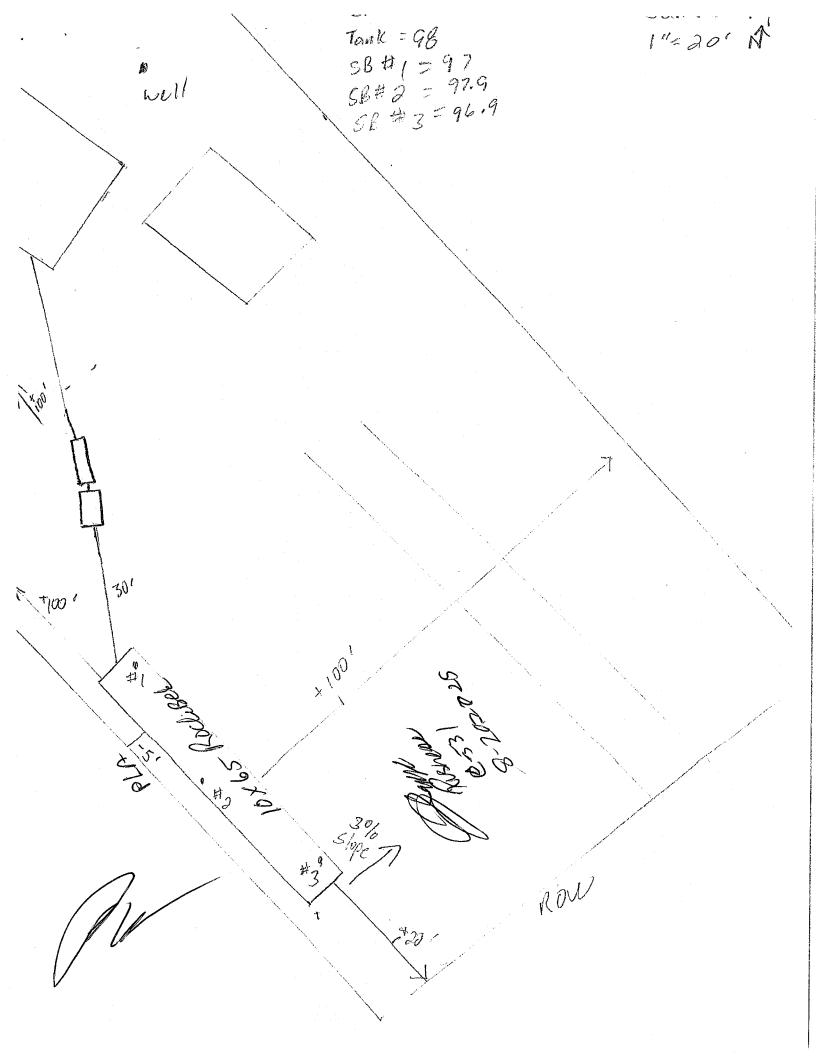
1. PUMP CAPACITY	Project ID:				v 0	3.15,2023
Pumping to Gravity or Pressure Distril	bution: Pres	sure				
A. If pumping to gravity enter the gallon p	er minute of the pump:		GPM (10 - 45	gpm)		
B. If pumping to a pressurized distribution	system:	56.0	GPM			
C. Enter pump description:			Demand Dosing			
2. HEAD REQUIREMENTS						eatment system int of discharge
A. Elevation Difference 7	ft			Supply line length	- 10	<u> 0,90</u>
between pump and point of discharge:	·	niet pipe		Supply mile		1
B. Distribution Head Loss: 5	ft			Elevation difference		
C. Additional Head Loss*:	ft (due to special equipment	, etc.)			· <del>}</del>	
<ul> <li>Common additional head loss: gate valve = 1 valve = see manufacturers details</li> </ul>	ft each, globe valve = 1.5 ft each,	splitter	Table I.Friction	on Loss in Plasti	c Pipe pe	r 100ft
Distribution	Head Loss		Flow Rate	Pipe Diame		
Gravity Distribution = Oft			(GPM)	1 1.25	1.5	2
Pressure Distribution based on	Minimum Average Hea	ad	10	9.1 3.1	1.3	0.3
Value on Pressure Distribution	Worksheet:		12 14	12.8   4.3 17.0   5.7	1.8	0.4 0.6
Minimum Average Head	Distribution Head L	oss	16	21.8 7.3	3.0	0.7
1ft 2ft	5ft 6ft		18	9.1	3.8	0.9
5ft	10ft		20	11.1	4.6	1.1
		I	25	16.8	6.9	1.7
D. 4 Cumly Bing Diameters	<del></del> ].		30	23.5	9.7	2.4
D. 1. Supply Pipe Diameter: 2.	0 In		35		12.9	3.2
2. Supply Pipe Length: 30	) ft		40		16.5	4.1
F. Fuintian Less in Disatis Disa you 400ff			45 50		20.5	5.0 6.1
E. Friction Loss in Plastic Pipe per 100ft	from Taple I:	•	55			7.3
Friction Loss = 7.53	ft per 100ft of pipe	·	60 65			8.6
F. Determine Equivalent Pipe Length from	n pump discharge to soil dispers	sal area	70			10.0 11.4
discharge point. Estimate by adding 25. Supply Pipe Length X 1.25 = Equivalent		ing loss.	75			13.0
[			85 95			16.4 20.1
30 ft X 1.25	= 37.5 ft	1			<u></u>	20.1
G. Calculate Supply Friction Loss by multip Supply Friction Loss =	plying Friction Loss Per 100ft(E	.) by the Equivo	alent Pipe Length	(F.) and divide by	100.	
7.53 ft per 100ft	X 37.5 ft	+ 100	= 2.8	ft		
H. Total Head requirement is the sum of t + Supply Friction Loss(2G)	he Elevation Difference(2A) +	Distribution Hea	d Loss(2B) + Addi	tional Head Loss(	2C)	
7.0 ft + 5.0	0 ft +	ft + [	2.8 ft	: = 14.8	ft	
3. PUMP SELECTION						<del></del>
A pump must be selected to deliver at le	east 56.0 GPM wi	ith at least		14.8 fee	t of total l	nead.
Comments:						
						l
						l



### STA Dosing Pump Tank Design Worksheet (Demand Dose)

	DETERM	NINE TANK CAPACIT	TY AND D	MENSIC	ONS						Proje	ect ID:						٧	03.15.2023
1.	A.	Design Flow (Design	gn Sum. 1A,	):				750	GPD	c.	Tank	Use:			Dosing				
	В.	Min. required pun	np tank ca	pacity:				750	Gat	D.	Recon	nmende	ed pump	tank ca	pacity:		10	00	Gal
2.	Α,	Tank Manufacture	r: [		BROWI	N PREC	AST		В.	Tan	k Mode	el:			1000 PT				
	c.	Capacity from ma	nufacture	r:			1	1001	Gallons	5					alculations				
	D.	Gallons per inch f	rom manu	ıfacture	er;	j	;	23.1	Gallons	per fr	nch			r timer	different to settings. Co				
	, E.,	Liquid depth of ta	nk from n	nanufac	turer:	ĺ	4	43.3	inches				Hereas	ury.					
DE	rermine	DOSING VOLUME	· · · · · · · · · · · · · · · · · · ·							***************************************		<del></del>		····	· · · · · · · · · · · · · · · · · · ·	<del></del>	<del></del>		· · · · · · · · · · · · · · · · · · ·
3.	Calculat	te Volume to Cover	Pump (Ti	ne inlet	of the pump	must	be at l	east 4-incl	es from	the b	ottom	of the	pump ta	nk & 2 ir	ches of wat	er cover	ing the pu	mp is	
		and block height + 2	inches) X	Gallon	s Per Inch (2	D)													
ĺ		( 6	in + 2	inches	) х	23	.1	Gallons I	Per Inch			=		185	Gallons				
4.	Minimu	ım Delivered Volun	ne = 4 X \	/olume	of Distributi	on Pip	ing:	<b>_</b>					<del></del>						
	-Item 1	9 of the Pressure D	istributio	n STA o	r item 11 of	Non-le	evel STA	4		123		Sallons	(Minimu	ım dose)	ſ		i.3	inches	/dose
5.	Calculat	e Maximum Pumpe	out Volum	ie (25%	of Design Fl	ow(1A	))		<u></u>						, to				
_	Design F	tow:	750	<u> </u>	GPD	X	0.25	=	<u> </u>	188		Gallons	(Maximu	ım dose)	<u> </u>	8	3,1	inches	/dose
6.	Select a	pumpout volume t	hat meets	s both A	Ainimum and	i Maxii	mum:			150	G	Sallons			1. 1 				
7.	Calculat	e Doses Per Day = 1	Design Flo	w(1A)	Delivered \	/olume	?(6.)			1.					Volume	e of L	i biupi.	n	
		750	gpd ÷		150		gal =			5.00	D	oses*				Pipe	<u> </u>		
	~-1:-1- <i>.</i>		•	-				* Doses n	eed to b	e equa	l to or	greater	r than 4		Pipe		Liquid	- 1	
8.		e Drainback:								٦					Diamet		er Foo		
	Α.	Diameter of Suppl	ly Pipe =					<u> </u>	2	inch	es				(inche	s) (	Gallon	<u> </u>	
	B.	Length of Supply F	ipe =					3	0	feet					1		0.045	_	
	C.	Volume of Liquid i	Per Lineal	Foot o	f Pipe =			0.1	170	Galle	ons/ft				1.25	_	0.078	_	
	D.	Drainback = Lengt			•	ne of L	iauid P								1.5		0.110		
		30	ft X	0.1		l/ft			.1	Gallo				- 1	<u>2</u> 3		0.170		
9.	Total Do	osing Volume = Deli	ivered Vol	ume(6.			D)								4		0.661	$\dashv$	
ľ		150	gal +	5.	1 ga	ıl = [	1	155	Gallon	IS				1	- 7		0.001		
10.	Minimun	n Alarm Volume = D	epth of al	arm (2	or 3 inches)	X gallo	ons per	inch of tar	nk(2D)	_									
		3	in X	23	.1 gal	/in	=	69	.3	Gall	lons								
11.	Reserve	Capacity Volume =	[Tank Liq	uid Dep	th(2E) - Alar	m Floa	t Depti	n(10.)] x ga	allons pe	er Inch	of tar	nk(2D)							
		43.3	in -	17	.7 in	] X [	2	3.1	gal/in	=		58	9.9	Gallor	าร				
DE/	AAND DO	SE FLOAT SETTING	is		Alarm and P	ump a	re to b	e wired or	n separa	te cir	cuits a	and insp	pected b	y the el	ectrical insp	ector			
12.	100	e Float Separation				₽.				<del></del>					·				
	iotal Da	sing Volume(9.) + (		r Inch(2				,,	<del></del>	-	٦.								
			gal ÷	L	23.1		gat	/in ≈	<del></del>	6.7	11n	rches						F	<del></del>
ł		ng from bottom of t to set Pump Off Fi		nn + bl	nck height ±	2 inch	24						Inches f	or Docc-	6.7 i		·		rt l
"			in + 2	r	8		nches									n <u> </u>	589.9	Gal	
В.	Distance	to set Pump On Fl		L				Float Sen	aration	Distar	nce(12		Alarm D Pump O	•	17.7 ¹ 1		69.3		
		8	in +	Γ	6.7		in =		5	inche			Pump O		8.0 ii		155 (		
c.	Distance	to set Alarm Float	= Distan	L ce to se	t Pump-On F	 loat(1	3B) + A	Alarm Dep	th (2-3									Gal	$\dagger \dagger \dagger \dagger$
		15	in +		3.0		in =		8	inche									




### Tank Buoyancy Worksheet

1.	Tank Specifications Project ID:			v 03.15.2023
	Tank Manufacturer: BROWN PRECAST	Tank Model: 1500	) ST	7 03.13.2023
B.		-l <u></u>		
Ĭ.	<u></u>	Tank Use:	Septic	
	Length: 144 in Width: 68 in Height: 61 in	Diameter:	in	
	Length: 12.0 ft Width: 5.7 ft Height: 5.1 ft	Radius of Tank:	in	
2.	Outside Volume of Tank			
-	Rectangular Tank		Circular Tank	
A.	Area of Tank = Length (ft) X Width (ft)	A. Area of Tank = $\pi r^2$ =	(3.14 X (Radius of T	ank) ² )
	12.0 ft X 5.7 ft = 68.0 sq.ft	3.14 X (	ft) ² =	sq.ft
В.	Volume of Tank = Area of Tank (2.A) X Height (ft)	B. Volume of Tank = A	rea of Tank X Height	
	68.0 sq.ft X 5.1 ft = 345.7 cu.ft	sq.ft	: X ft	cu.ft.
3.	Force of Tank Weight (F _{TW} )			
	Weight of Tank (provided by manufacturer) 13000 lbs			
4.	Force of Soil Weight Over Tank (F _{SW} )			
A.	Depth of Cover Over Tank: 24 in 2.0 ft		Cail T.	Weight of Soil
	Weight of Soil Per Cubic Foot: 120 lbs/cu.ft		Soil Type	(lbs/ft ³ )
C.	Volume of Soil Over Tank = Depth of Cover(4A) (ft) X Area of Tank(2A)	(ft ² )	Sandy	120
	2.0 ft X 68.0 sq.ft = 136.0 cu.ft		Loamy	100
D.	Weight of Soil Over Tank = Volume of Soil Over Tank(4C) X Weight of So	il Per Cubic Foot	Clay	90
	136.0 cu.ft X 120 lbs/cu.ft = 16,320.0 lbs Note: As	sumes saturation does not get	over the lid of the tank	
5.B	uoyant Force (F _B )			, Fsorweght (Fix)
	Buoyant Force $(F_B)$ = Outside Volume of Tank(2B) X Weight of Water Per	Cubic Foot (62 4 lbs /ft ³ )	V 4 2 (C 5 4 5 4 )	
		Cubic 1000 (62.4 (05/10)	A 1.2 (Safety Factor)	N O
4 1	346			Flanteright (Fre)
				—       <b> </b>
Α.	Downward Force = Force of Tank Weight (F _{TW} )(3.) + Force of Soil Weight	t of Soil (F _{SW} )(4.)		
n	13000 lbs + 16320 lbs = 29,320.0 lbs			Facousty (Fo)
В.	Net Difference = Downward Force(6A) - Buoyant Force Including Safety	Factor (5.)		For + Fro > 1.2 x Fg For = Vsal x 80 lbs/ft? Fro = Weight of tank
	29320 lbs - 25884 lbs = 3,436.5 lbs			Fa = Total tank volume x 62.4 lbs/ft ² (8.35 lbs/gal)
	If the Net Difference is negative, counter measures will need to be take Comments/Solution:	n to prevent the tank from	m floating out of the	e ground.
				í l



### Tank Buoyancy Worksheet

12	Tank Canadianting			y 03.15.2023
	Tank Specifications Project ID:	7	4000 PT	7 03.13.2023
A.	Tank Manufacturer: BROWN PRECAST	Tank Model:	1000 PT	
В.	Outside Tank Dimensions and Specifications:	Tank Use:	Dosing	
	Length: 86 in Width: 68 in Height: 61.25 in	Diameter:	in	
	Length: 7.2 ft Width: 5.7 ft Height: 5.1 ft	Radius of Tank:	in	
2.	Outside Volume of Tank			
$\vdash$	Rectangular Tank		Circular Tank	
Α.	Area of Tank = Length (ft) X Width (ft)	A. Area of Tank =	$\pi r^2 = (3.14 \text{ X (Radius of })$	「ank) ² )
	7.2 ft X 5.7 ft = 40.6 sq.ft	3.14 X (	ft) ² =	sq.ft
В.	Volume of Tank = Area of Tank (2.A) X Height (ft)	B. Volume of Tan	k = Area of Tank X Heigh	it (ft)
	40.6 sq.ft X 5.1 ft = 207.3 cu.ft		sq.ft X f	ft =cu.ft
3.	Force of Tank Weight (F _{TW} )			
	Weight of Tank (provided by manufacturer) 8650 lbs			
4.	Force of Soil Weight Over Tank (F _{SW} )			
'	Depth of Cover Over Tank: 24 in 2.0 ft	•	Soil Type	Weight of Soil (lbs/ft³)
ı	Weight of Soil Per Cubic Foot: 120 lbs/cu.ft	,		
C.	Volume of Soil Over Tank = Depth of Cover(4A) (ft) X Area of Tank(2A	) (ft²)	Sandy	120
	2.0 ft X 40.6 sq.ft = 81.2 cu.ft		Loamy	100
D.	Weight of Soil Over Tank = Volume of Soil Over Tank(4C) X Weight of S	oil Per Cubic Foot	Clay	90
	81.2 cu.ft X 120 lbs/cu.ft = 9,746.7 lbs Note: A	ssumes saturation does n	ot get over the lid of the tan	ik Fsorwogu (Fig)
5.E	Buoyant Force (F _B )			
	Buoyant Force $(F_B)$ = Outside Volume of Tank(2B) X Weight of Water Po	er Cubic Foot (62.4 lb	s/ft ³ ) X 1.2 (Safety Factor)	
6	Evaluation of Net Forces			Floaksmight (Fin)
A.		tht of Soil (Few)(4.)		
	8650 lbs + 9747 lbs = 18,396.7 lbs	, and a second Control of		Faugury (FB)
В.	Net Difference = Downward Force(6A) - Buoyant Force Including Safety	/ Factor (5.)		F ₅ n + F _{tw} > 1,2 x F _B F _{5w} = V _{5oit} x B0 lbs/ft ²
	18397 lbs - 15522 lbs = 2,875.1 lbs	• •		. Fry = Weight of tank Fr = Total tank volume x 62.4 lbs/(t) (8.35 lbs/qal)
	If the Net Difference is negative, counter measures will need to be tal	ken to prevent the tai	nk from floating out of tl	
	Comments/Solution:			
			······································	



### **Property Line Agreement**

I, Julia Ann Miller, as Trustee of the Julia Ann Miller Revocable Living Trust, owner of the property described as:

Parcel No. 20.0491.000

Property Address: 39003 Dora Lee Road, Waubun MN 56589

Lot Six (6), Block One, Dora Lee Estates, according to the certified Plat thereof on file and of record in the office of the County Recorder in and for Becker County, Minnesota.

give Dean P. Spaeth and JoAnn C. Spaeth, husband and wife, as joint tenants, owners of the property described as:

Parcel No. 20.0492.000

Property Address: 39021 Dora Lee Road, Waubun MN 56589

Lot Seven (7), Block One, Dora Lee Estates, according to the certified Plat thereof on file and of record in the office of the County Recorder in and for Becker County, Minnesota.

permission to have their sewer system closer than the required 10 feet to the lot line.

Dated: 41, 2025

Subscribed and sworn to before me this Ath day of July, 2025.

My Comm. Expires: 1/3/129

TIFFANI RENEE LAVONNE ROSING NOTARY PUBLIC - MINNESOTA

(Notary Stamp)